Exercise 1.1 : Solutions of Questions on Page Number : 14

Q1 :

Using appropriate properties find:

(i)
$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$$

(ii) $\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$

Answer :

(i)

2	3	5	3	1	=-2×	3	3	1	5
$-\frac{-3}{3}$	5	2	5	6	$=\times$	5	5	6	$+\frac{1}{2}$

(Using commutativity of rational numbers)

$$= \left(-\frac{3}{5}\right) \times \left(\frac{2}{3} + \frac{1}{6}\right) + \frac{5}{2}$$
 (Distributivity)
$$= \left(-\frac{3}{5}\right) \times \left(\frac{2 \times 2 + 1}{6}\right) + \frac{5}{2} = \left(-\frac{3}{5}\right) \times \left(\frac{5}{6}\right) + \frac{5}{2} = \left(-\frac{3}{6}\right) + \frac{5}{2} = \left(\frac{-3 + 5 \times 3}{6}\right) = \left(\frac{-3 + 15}{6}\right) = \frac{12}{6} = 2$$

(ii)

$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5} = \frac{2}{5} \times \left(-\frac{3}{7}\right) + \frac{1}{14} \times \frac{2}{5} - \frac{1}{6} \times \frac{3}{2}$$
(By commutativity)

Write the additive inverse of each of the following:

(i) $\frac{2}{8}$ (ii) $\frac{-5}{9}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$

```
Answer :
```

(i) $\frac{2}{8}$ Additive inverse = $-\frac{2}{8}$

(ii)
$$-\frac{5}{9}$$

Additive inverse = $\frac{5}{9}$

 $\frac{-6}{-5} = \frac{6}{5}$

Additive inverse = $\frac{-6}{5}$

$$\frac{2}{(iv)} = \frac{-2}{9}$$
Additive inverse $= \frac{2}{9}$

$$\frac{19}{(v)} = \frac{-19}{6}$$
Additive inverse $= \frac{19}{6}$
Q3:

Verify that -(-x) = x for.

(i) $x = \frac{11}{15}$ (ii) $x = -\frac{13}{17}$

Answer :

(i)
$$x = \frac{11}{15}$$

The additive inverse of $x = \frac{11}{15}$ is $-x = -\frac{11}{15}$ as $\frac{11}{15} + \left(-\frac{11}{15}\right) = 0$

This equality $\frac{11}{15} + \left(-\frac{11}{15}\right) = 0$ represents that the additive inverse of $-\frac{11}{15}$ is $\frac{11}{15}$ or it can be said that $-\left(-\frac{11}{15}\right) = \frac{11}{15}$ i.e., -(-x) = x(ii) $x = -\frac{13}{17}$ The additive inverse of $x = -\frac{13}{17}$ is $-x = \frac{13}{17}$ as $-\frac{13}{17} + \frac{13}{17} = 0$ This equality $-\frac{13}{17} + \frac{13}{17} = 0$ represents that the additive inverse of $\frac{13}{17}$ is $-\frac{13}{17}$ i.e., -(-x) = x

Q4 :

Find the multiplicative inverse of the following.

(i)
$$-13$$
 (ii) $\frac{-13}{19}$ (iii) $\frac{1}{5}$
(iv) $\frac{-5}{8} \times \frac{-3}{7}$ (v) $-1 \times \frac{-2}{5}$ (vi) - 1

Answer :

(i) - 13

Multiplicative inverse = $-\frac{1}{13}$

(ii)
$$-\frac{13}{19}$$

Multiplicative inverse = $-\frac{19}{13}$

Multiplicative inverse = 5

$$(iv) -\frac{5}{8} \times -\frac{3}{7} = \frac{15}{56}$$

Multiplicative inverse $\overline{15}$

56

$$(v) -1 \times -\frac{2}{5} = \frac{2}{5}$$

Multiplicative inverse
$$=\frac{5}{2}$$

(vi) - 1

Q5 :

Name the property under multiplication used in each of the following:

$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$$
(i) $\frac{-13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$
(ii) $\frac{-19}{29} \times \frac{29}{-19} = 1$

Answer :

$$(i) -\frac{4}{5} \times 1 = 1 \times -\frac{4}{5} = -\frac{4}{5}$$

1 is the multiplicative identity.

(ii) Commutativity

(iii) Multiplicative inverse

Q6 :

Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.

Answer :

$$\frac{6}{13} \times \left(\text{Reciprocal of } -\frac{7}{16} \right) = \frac{6}{13} \times -\frac{16}{7} = -\frac{96}{91}$$

Q7 :

Tell what property allows you to compute
$$\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) \operatorname{as} \left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$$
.

Answer :

Associativity

Q8 :

Answer :

If it is the multiplicative inverse, then the product should be 1.

However, here, the product is not 1 as

$$\frac{8}{9} \times \left(-1\frac{1}{8}\right) = \frac{8}{9} \times \left(-\frac{9}{8}\right) = -1 \neq 1$$

Q9 :

Is 0.3 the multiplicative inverse of $3\frac{1}{3}$? Why or why not?

Answer :

$$3\frac{1}{3} = \frac{10}{3}$$

$$0.3 \times 3\frac{1}{3} = 0.3 \times \frac{10}{3} = \frac{3}{10} \times \frac{10}{3} = 1$$

Here, the product is 1. Hence, 0.3 is the multiplicative inverse of $3\frac{1}{3}$.

www.ncrtsolutions.in www.ncrtsolutions.com

Q10 :

Write:

- (i) The rational number that does not have a reciprocal.
- (ii) The rational numbers that are equal to their reciprocals.
- (iii) The rational number that is equal to its negative.

Answer :

(i) 0 is a rational number but its reciprocal is not defined.

(ii) 1 and -1 are the rational numbers that are equal to their reciprocals.

(iii) 0 is the rational number that is equal to its negative.

Q11 :

Fill in the blanks.

(i) Zero has _____ reciprocal.

- (ii) The numbers ______ and _____ are their own reciprocals
- (iii) The reciprocal of 5 is _____.

(iv) Reciprocal of x, where $x \neq 0$ is _____.

(v) The product of two rational numbers is always a ______.

(vi) The reciprocal of a positive rational number is ______.

Answer :

(i) No

(ii) 1, - 1

$$(iii)$$
 $-\frac{1}{5}$

(iv) *x*

(v) Rational number

(vi) Positive rational number

Exercise 1.2 : Solutions of Questions on Page Number : 20 **Q1 :**

Represent these numbers on the number line.

(i)
$$\frac{7}{4}$$
 (ii) $\frac{-5}{6}$

Answer :

(i) $\frac{7}{4}$ can be represented on the number line as follows.

Q2 :

Represent $\frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11}$ on the number line.

Answer :

www.ncrtsolutions.in www.ncrtsolutions.com

 $\frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11}$ can be represented on the number line as follows.

Q3 :

Write five rational numbers which are smaller than 2.

Answer :

2 can be represented as $\frac{14}{7}$.

Therefore, five rational numbers smaller than 2 are

 $\frac{13}{7}, \frac{12}{7}, \frac{11}{7}, \frac{10}{7}, \frac{9}{7}$

Q4 :

Find ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$.

Answer :

 $\frac{-2}{5}$ and $\frac{1}{2}$ can be represented as $-\frac{8}{20}$ and $\frac{10}{20}$ respectively.

$$\frac{-2}{5}$$
 $\frac{1}{2}$

Therefore, ten rational numbers between 5 and 2 are

$$-\frac{7}{20}, -\frac{6}{20}, -\frac{5}{20}, -\frac{4}{20}, -\frac{3}{20}, -\frac{2}{20}, -\frac{1}{20}, 0, \frac{1}{20}, \frac{2}{20}$$

Q5 :

Find five rational numbers between

(i)
$$\frac{2}{3}$$
 and $\frac{4}{5}$
(ii) $\frac{-3}{2}$ and $\frac{5}{3}$
(iii) $\frac{1}{4}$ and $\frac{1}{2}$

Answer :

(i) $\frac{2}{3}$ and $\frac{4}{5}$ can be represented as $\frac{30}{45}$ and $\frac{36}{45}$ respectively. Therefore, five rational numbers between $\frac{2}{3}$ and $\frac{4}{5}$ are $\frac{31}{45}, \frac{32}{45}, \frac{33}{45}, \frac{34}{45}, \frac{35}{45}$ (ii) $-\frac{3}{2}$ and $\frac{5}{3}$ can be represented as $-\frac{9}{6}$ and $\frac{10}{6}$ respectively. Therefore, five rational numbers between $-\frac{3}{2}$ and $\frac{5}{3}$ are $-\frac{8}{6}, -\frac{7}{6}, -1, -\frac{5}{6}, -\frac{4}{6}$ (iii) $\frac{1}{4}$ and $\frac{1}{2}$ can be represented as $\frac{8}{32}$ and $\frac{16}{32}$ respectively. Therefore, five rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$ are $\frac{9}{32}, \frac{10}{32}, \frac{11}{32}, \frac{12}{32}, \frac{13}{32}$

Q6 :

www.ncrtsolutions.in www.ncrtsolutions.com

Write five rational numbers greater than - 2.

Answer :

- 2 can be represented as -
$$\frac{14}{7}$$

Therefore, five rational numbers greater than - 2 are

$$-\frac{13}{7}, -\frac{12}{7}, -\frac{11}{7}, -\frac{10}{7}, -\frac{9}{7}$$

Q7 :

Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$.

Answer :

 $\frac{3}{5}$ and $\frac{3}{4}$ can be represented as $\frac{48}{80}$ and $\frac{60}{80}$ respectively.

Therefore, ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$ are

 $\frac{49}{80}, \frac{50}{80}, \frac{51}{80}, \frac{52}{80}, \frac{53}{80}, \frac{54}{80}, \frac{55}{80}, \frac{56}{80}, \frac{57}{80}, \frac{58}{80}$