Q1:
Using appropriate properties find:
(i) $-\frac{2}{3} \times \frac{3}{5}+\frac{5}{2}-\frac{3}{5} \times \frac{1}{6}$
(ii) $\frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5}$

Answer :

(i)
$-\frac{2}{3} \times \frac{3}{5}+\frac{5}{2}-\frac{3}{5} \times \frac{1}{6}=-\frac{2}{3} \times \frac{3}{5}-\frac{3}{5} \times \frac{1}{6}+\frac{5}{2}$
(Using commutativity of rational numbers)

$$
\begin{aligned}
& =\left(-\frac{3}{5}\right) \times\left(\frac{2}{3}+\frac{1}{6}\right)+\frac{5}{2} \quad \text { (Distributivity) } \\
& =\left(-\frac{3}{5}\right) \times\left(\frac{2 \times 2+1}{6}\right)+\frac{5}{2}=\left(-\frac{3}{5}\right) \times\left(\frac{5}{6}\right)+\frac{5}{2} \\
& =\left(-\frac{3}{6}\right)+\frac{5}{2}=\left(\frac{-3+5 \times 3}{6}\right)=\left(\frac{-3+15}{6}\right) \\
& =\frac{12}{6}=2
\end{aligned}
$$

(ii)

$$
\frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5}=\frac{2}{5} \times\left(-\frac{3}{7}\right)+\frac{1}{14} \times \frac{2}{5}-\frac{1}{6} \times \frac{3}{2} \text { (By commutativity) }
$$

$=\frac{2}{5} \times\left(-\frac{3}{7}+\frac{1}{14}\right)-\frac{1}{4}$
(By distributivity)
$=\frac{2}{5} \times\left(\frac{-3 \times 2+1}{14}\right)-\frac{1}{4}$
$=\frac{2}{5} \times\left(\frac{-5}{14}\right)-\frac{1}{4}$
$=-\frac{1}{7}-\frac{1}{4}$
$=\frac{-4-7}{28}=\frac{-11}{28}$

Q2 :
Write the additive inverse of each of the following:
(i) ${ }^{\frac{2}{8}}$ (ii) ${ }^{\frac{-5}{9}}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$

Answer :
(i) $\frac{2}{8}$

Additive inverse $=-\frac{2}{8}$
(ii) $-\frac{5}{9}$

Additive inverse $=\frac{5}{9}$
(iii) $\frac{-6}{-5}=\frac{6}{5}$

Additive inverse $=\frac{-6}{5}$
(iv) $\frac{2}{-9}=\frac{-2}{9}$

Additive inverse $=\frac{2}{9}$
(v) $\frac{19}{-6}=\frac{-19}{6}$

Additive inverse $=\frac{19}{6}$
Q3 :
Verify that $-(-x)=x$ for.
(i) $x=\frac{11}{15}$ (ii) $x=-\frac{13}{17}$

Answer :
(i) $x=\frac{11}{15}$

The additive inverse of $x=\frac{11}{15}$ is $-x=-\frac{11}{15}$ as $\frac{11}{15}+\left(-\frac{11}{15}\right)=0$
This equality $\frac{11}{15}+\left(-\frac{11}{15}\right)=0$ represents that the additive inverse of $-\frac{11}{15}$ is $\frac{11}{15}$ or it can be said that $-\left(-\frac{11}{15}\right)=\frac{11}{15}$ i.e., $-(-x)=x$
(ii) $x=-\frac{13}{17}$

The additive inverse of $x=-\frac{13}{17}$ is $-x=\frac{13}{17}$ as $-\frac{13}{17}+\frac{13}{17}=0$

This equality $-\frac{13}{17}+\frac{13}{17}=0$ represents that the additive inverse of $\frac{13}{17}$ is $-\frac{13}{17}$ i.e., $-(-x)=x$ Q4 :

Find the multiplicative inverse of the following.
(i) -13 (ii) $\frac{-13}{19}$ (iii) $\frac{1}{5}$
(iv) $\frac{-5}{8} \times \frac{-3}{7}$ (v) $-1 \times \frac{-2}{5}($ vi) -1

Answer :
(i) -13

Multiplicative inverse $=-\frac{1}{13}$
(ii) $-\frac{13}{19}$

Multiplicative inverse $=-\frac{19}{13}$
(iii) $\frac{1}{5}$

Multiplicative inverse $=5$
(iv) $-\frac{5}{8} \times-\frac{3}{7}=\frac{15}{56}$

Multiplicative inverse $=\frac{56}{15}$
(v) $-1 \times-\frac{2}{5}=\frac{2}{5}$

Multiplicative inverse $=\frac{5}{2}$
(vi) - 1

Multiplicative inverse =-1
Q5 :
Name the property under multiplication used in each of the following:
(i) $\frac{-4}{5} \times 1=1 \times \frac{-4}{5}=-\frac{4}{5}$
(ii) $-\frac{13}{17} \times \frac{-2}{7}=\frac{-2}{7} \times \frac{-13}{17}$
(iii) $\frac{-19}{29} \times \frac{29}{-19}=1$

Answer :
(i) $-\frac{4}{5} \times 1=1 \times-\frac{4}{5}=-\frac{4}{5}$

1 is the multiplicative identity.
(ii) Commutativity
(iii) Multiplicative inverse

Q6:

Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.

Answer :
$\frac{6}{13} \times\left(\right.$ Reciprocal of $\left.-\frac{7}{16}\right)=\frac{6}{13} \times-\frac{16}{7}=-\frac{96}{91}$

Q7 :
Tell what property allows you to compute ${ }^{\frac{1}{3} \times\left(6 \times \frac{4}{3}\right)}$ as $\left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$.

Answer :

Associativity
Q8:

Is ${ }^{\frac{8}{9}}$ the multiplicative inverse of ${ }^{-1 \frac{1}{8}}$? Why or why not?

Answer:

If it is the multiplicative inverse, then the product should be 1.
However, here, the product is not 1 as
$\frac{8}{9} \times\left(-1 \frac{1}{8}\right)=\frac{8}{9} \times\left(-\frac{9}{8}\right)=-1 \neq 1$
Q9 :

Is 0.3 the multiplicative inverse of $3 \frac{1}{3}$? Why or why not?

Answer :
$3 \frac{1}{3}=\frac{10}{3}$
$0.3 \times 3 \frac{1}{3}=0.3 \times \frac{10}{3}=\frac{3}{10} \times \frac{10}{3}=1$

Here, the product is 1 . Hence, 0.3 is the multiplicative inverse of $3 \frac{1}{3}$.

Q10 :

Write:
(i) The rational number that does not have a reciprocal.
(ii) The rational numbers that are equal to their reciprocals.
(iii) The rational number that is equal to its negative.

Answer :
(i) 0 is a rational number but its reciprocal is not defined.
(ii) 1 and -1 are the rational numbers that are equal to their reciprocals.
(iii) 0 is the rational number that is equal to its negative.

Q11 :

Fill in the blanks.
(i) Zero has \qquad reciprocal.
(ii) The numbers \qquad and \qquad are their own reciprocals
(iii) The reciprocal of -5 is \qquad .
(iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is \qquad .
(v) The product of two rational numbers is always a \qquad -
(vi) The reciprocal of a positive rational number is \qquad .

Answer :
(i) No
(ii) 1, - 1
(iii) $-\frac{1}{5}$
(iv) x
(v) Rational number
(vi) Positive rational number

Exercise 1.2 : Solutions of Questions on Page Number : 20
Q1 :
Represent these numbers on the number line.
(i) $\frac{7}{4}$ (ii) $\frac{-5}{6}$

Answer :
(i) $\frac{7}{4}$ can be represented on the number line as follows.

(ii) $-\frac{5}{6}$ can be represented on the number line as follows.

Q2 :

Represent $\frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11}$ on the number line.

Answer :
$\frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11}$

Q3 :

Write five rational numbers which are smaller than 2.

Answer :
2 can be represented as $\frac{14}{7}$.
Therefore, five rational numbers smaller than 2 are
$\frac{13}{7}, \frac{12}{7}, \frac{11}{7}, \frac{10}{7}, \frac{9}{7}$
Q4 :

Find ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$.

Answer :
$\frac{-2}{5}$ and $\frac{1}{2}$ can be represented as $-\frac{8}{20}$ and $\frac{10}{20}$ respectively.
Therefore, ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$ are
$-\frac{7}{20},-\frac{6}{20},-\frac{5}{20},-\frac{4}{20},-\frac{3}{20},-\frac{2}{20},-\frac{1}{20}, 0, \frac{1}{20}, \frac{2}{20}$
Q5 :

Find five rational numbers between
(i) $\frac{2}{3}$ and $\frac{4}{5}$
(ii) $\frac{-3}{2}$ and $\frac{5}{3}$
(iii) $\frac{1}{4}$ and $\frac{1}{2}$

Answer :

(i) $\frac{2}{3}$ and $\frac{4}{5}$ can be represented as $\frac{30}{45}$ and $\frac{36}{45}$ respectively.

Therefore, five rational numbers between $\frac{2}{3}$ and $\frac{4}{5}$ are
$\frac{31}{45}, \frac{32}{45}, \frac{33}{45}, \frac{34}{45}, \frac{35}{45}$
(ii) $-\frac{3}{2}$ and $\frac{5}{3}$ can be represented as $-\frac{9}{6}$ and $\frac{10}{6}$ respectively.

Therefore, five rational numbers between $-\frac{3}{2}$ and $\frac{5}{3}$ are
$-\frac{8}{6},-\frac{7}{6},-1,-\frac{5}{6},-\frac{4}{6}$
(iii) $\frac{1}{4}$ and $\frac{1}{2}$ can be represented as $\frac{8}{32}$ and $\frac{16}{32}$ respectively.

Therefore, five rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$ are

$$
\frac{9}{32}, \frac{10}{32}, \frac{11}{32}, \frac{12}{32}, \frac{13}{32}
$$

Q6:

Write five rational numbers greater than -2 .

Answer :
-2 can be represented as $-\frac{14}{7}$.

Therefore, five rational numbers greater than - 2 are
$-\frac{13}{7},-\frac{12}{7},-\frac{11}{7},-\frac{10}{7},-\frac{9}{7}$

Q7 :
Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$.

Answer :
$\frac{3}{5}$ and $\frac{3}{4}$ can be represented as $\frac{48}{80}$ and $\frac{60}{80}$ respectively.
Therefore, ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$ are
$\frac{49}{80}, \frac{50}{80}, \frac{51}{80}, \frac{52}{80}, \frac{53}{80}, \frac{54}{80}, \frac{55}{80}, \frac{56}{80}, \frac{57}{80}, \frac{58}{80}$

